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At St. Louis a year ago, we reported on the 
development and testing of an estimation proce- 
dure for the population of all Wisconsin munici- 
palities. That development was necessary to 
implement the 1971 Wisconsin legislation which 
changed the state's method of sharing its revenue 
with its 1,800 odd municipalities. Previously, 
state -collected revenues had been returned to the 
municipality whence it came, the 1971 legislation 
directed that the tax sharing be on the basis of 
annual population estimates of the municipali- 
ties. The same legislation mandated that short - 
term population projections be provided to the 

municipalities for budget revenue anticipation. 
This work, like the earlier, was done by an 
informal seminar involving University and State 
people. 

In the nature of the problem, a projection 
of next year's estimate would be preferable to a 

projection of population per se. Many of the 
municipalities are very small, two -thirds have a 
thousand or less population. Most lack sophisti- 
cated budget planning capability, thus the need 
for projections. Very little demographically 
useful data is generated by or about these 
communities, and this constrains the methodologi- 
cal options of those who would estimate or 
project population. 

Derivation of the Model 

The movement through time of the population 
size for an area, or of the estimate of popula- 
tion size, would seem to be a phenomenon well 
suited to time series analysis. It can be des- 
cribed by a sequence of values P0, P1, ..., Pt..., 
where Pt is the population of the area at time t. 

However, to make a forecast using such an approach 
it is first necessary to identify a suitable 
model, and then to estimate the model's parameters 
from the available data. It is sometimes possi- 
ble to use purely statistical tools to identify 
a suitable model for making forecasts; to let the 
data speak for themselves, so to speak. Such 
model identification procedures are well described 
in Box and Jenkins (1970), but these require a 
relatively long data series. These statistical 
methods have been applied to a series consisting 
of the Swedish population from 1780 to 1970 by 
Saboia (1974) with success. However, the statis- 
tical tool is not the only way to identify an 
appropriate time series model. Reasonable models 
may be constructed by examining the underlying 
mechanisms which give rise to the series in the 
first place. This latter approach is the only 
one available when the observed length of the 
series is short, that is, when there are only a 
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few observation points. The Box and Jenkins 
procedures use estimates of the auto -correlations 
of the time series for which the standard error 
behaves like where "n" is the number of 
observations in the series. With only, say, 
fourteen points in the series, the standard error 
would be approximately 0.27. 

In this paper, we describe how we arrived at 
one such time series model starting from the 
familiar population accounting equation, and 
present an evaluation of the results for two 
applications. First for the annual forecasting 
of Wisconsin Municipal population estimates and 
the second for the forecasting of the Swedish 
population. 

The algebra of a simplified derivation of 
the time series model from the demographic equa- 
tion (1), is straightforward. 

Pt 
Pt-1 + Bt-1 - Dt-1 + 

(1) 

To keep the presentation short we have eliminated 
some niceties which do not affect the conclusion 
of the argument presented here. In equation (1) 

the population at time t is the population at 
some earlier time plus births, Bt_l, and minus 
deaths, Dt_1, in the intervening period plus the 
net migrants, M for that period. If we rep- 
resent births as being the product of the popula- 
tion at the beginning of the time period, 
times some birth rate, b, plus some small error 

element, e, with an expectation of 0; and do the 
same for deaths with a death rate, d, then 

Bt-1 Pt-1 b 
+ e, 

Dt-1 = Pt-1 
d + e. 

(2) 

(3) 

The net migration is the difference between the 

in- migrants and the out -migrants, or, 

= I - Mt_1 (4) 

Collecting the first three terms on the right 
hand side of (1) and using the relationships in 

(2) and (3) we can write 

Pt = A Pt-1+Mt-l+e (5) 

where A = (1 + b -d), which represents the natural 
increase in that population over the period. 

We now attack the migration component, M , 

by considering it as a series in its own right 



and assuming that a first order auto -regressive 
model would provide an approximation of its 

behavior over time, i.e., 

Mt-1 C Mt-2 
+ e. (6) 

The migration for the time t -1 to t is the 

migration in the previous year times some coef- 
ficient C plus a small error factor. Equation 
(7) expresses the net migration in the year t -2 
as being the population at the end of that year 
minus an expression which takes into account the 
population at the beginning of the year and the 
natural increase occurring during the year. 

Mt-2 Pt-1 - A Pt-2 
+ e (7) 

When that expression is substituted into equation 
(6) we have equation (8), 

Mt-1 = C (Pt-1 - A Pt-2) e (8) 

and when the now complete representation of the 
migration component is substituted, along with 
the natural increase component, into the demo- 
graphic equation (1), we get equation (9), which 
reduces to the equation (10). 

Pt = A Pt-1 + C (Pt-1 -A'Pt-2) + e (9) 

=(A + C) Pt-1 - (A C) Pt-2)+ e (10) 

Now let 

E = A + C 

F = -A C 

then, 

Pt E Pt-1 + F Pt-2 e. 

To estimate 
t' 

the ratio in the denominator 
is the estimate defined below: 

ru,t = ru,o + (rapt ra,o) (15) 

where the ratio, 
a 

is the symptom- population 
ratio for a larger area 'a' which' includes the 
uth place, and of course rapt is an estimate. 

In constructing the time series, the popu- 
lation counts for 1960 and 1970 were used, and 
estimates for the intervening years were computed 
with the estimation model above. In order to 
eliminate the error of closure, the intercensal 
yearly estimates were adjusted by the interpola- 
tion of the symptom to population ratios. Had 
we interpolated the actual population estimates 
we would have destroyed the information about 
year -to -year change which appears in the symptom 
counts for each year. Thus, in equation (14), 
the ratio, is estimated by a weighted 
average of other estimates rather than 
averaging population estimates as such. The 
intercensal interpolation used two estimates of 
the symptom- population ratio for each year. One 
used 1960 as the base period, and one was 
computed with 1970 as the base period, from which 
the estimate was made retrospectively. These two 
were then weighted in proportion to the propin- 
quity to the base year, and the weights, of 
course, were constrained in each case, to sum to 
one, i.e., 

ru,t+60 = 0.1 (10 -t) +60 t (16) 

where: t = 1, 2, ..., 9 and k in denotes 
(12) base year. 

Table 1. 

(13) 

We let "E" stand for the coefficient of the popu- 
lation at time t -1 and "F" represent the coeffi- 
cient of population at time t -2, producing 
equation (13) which is the second order auto - 
regressive model. 

An Application to Wisconsin's Municipal 
Population 

The time series, in this case, was not a 
series of population counts, but a series of 
population estimates. A few words of explanation 
about how those estimates were derived is impor- 
tant to an understanding of the whole process. 
The estimation methodology developed and reported 
to this body last year, is essentially a censal 
ratio method which uses a difference estimator 
to update the symptom to population ratio of the 
places estimated. The population, t' 

of the 
uth place at time t is equated to a count of 
symptom, Su , related to that place at time t 

divided by symptom to population ratio, ru 
of that symptom to the place's population at ' 

time t. 

Pu = 

ru,t 

(14) 
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Selected Error Measures for One, Two, and Three 
Year Ahead Population Projections of 

1,835 Wisconsin Municipalities 
Base Years 1967 -1970 

Base Year 
Measure 

One Year 
Ahead 

Two Year 
Ahead 

Three Year 
Ahead 

1967: MSE 211,742 348,023 505,681 
Meant Err 5.12 7.20 8.58 
% Misalloc 1.75 2.57 3.16 

1968: MSE 159,547 156,618 321,234 
Mean¡% Err 5.66 6.78 10.37 
Misalloc 1.81 1.98 3.11 

1969: MSE 185,761 215,218 320,972 
Mean! %tErr 6.66 10.77 11.75 
% Misalloc 1.99 2.86 3.29 

1970: MSE 43,211 156,527 430,630 
Mean' %;Err 6.52 5.74 8.87 

Misalloc 1.54 1.86 2.96 

Table 1 shows the results of an evaluation 
of the model's performance for one, two, and three 
year ahead forecasts from base years 1967 through 

1970. Forecasts were made for 1,835 munici- 
palities. Three summary measures of performance 
are reported: the mean square error, the mean 



percent absolute error, and the percent misallo- 
cation. If you will look at the diagonal from 
lower left, that is 1969, up to the top right, 

these are the 1970, 1 -year, 2 -year and 3 -year 
ahead projections based in 1969, 1968 and 1967. 
The mean percent absolute error and the percent 
misallocation increase, as one would expect, from 
the first to the second to the third. The mean 
square error in year two is not consistent with 
that pattern, however, one must remember that 
this measure is far more sensitive to outliers. 
If you will look at the verticals, we had con- 
sidered the possibility that the incremental 
increase in the length of the series might 
improve the estimates as time went on but, the 

evidence over this four year period is inconclu- 
sive. If you look at the horizontals you will 
discover, as expected, that the projections 
degrade as you get further and further from the 
last estimate year. 

Table 2 displays the error distribution as 

a percent of the estimate for a one year ahead 
projection. The error seems to be reasonably 
unbiased with 20.8% less than -5% and 17.4% 
greater than 5 %. The range, however, is large. 
Some of these large errors represent the effect 
of perturbations in the data series. 

Figure 1 

Table 2 

Per Cent Deviations 
One Year Ahead Population Projection of 

1,835 Wisconsin Municipalities 
Base Year 1967 

Deviation % Number 

< -45 3 0.16 
-45 < -35 4 0.22 
-35 < -25 10 0.55 
-25 < -15 35 1.91 
-15 < -5 330 17.98 
-5 < +5 1,133 61.74 

5 <15 296 16.13 
15 <25 20 1.09 
25<35 2 0.11 

35 <45 1 0.05 
45+ 1 0.05 

Figure 1 is a plot of the absolute value of 
the relative error against the logarithm of the 
place size. The astericks represent one obser- 
vation each, any digit from two to nine represents 
that number of observations and the plus sign 
indicates more than nine observations. You will 
notice a distinct drift from the lower right to 
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the upper left, indicating that the error is 

inversely related to size. But again, there are 
outliers that represent problems. 

It was necessary before these could be used 
for budget anticipation purposes, to investigate 
the possible causes for the outliers. We found 

that, in general, they represented one of the 
following categories. Either there was a new 
incorporation and there were no past observations 
for the model to work with, or there were signi- 
ficant one -time annexations. Third, there were 
some other one -time events such as significant 
size construction crews moving in one year and 
out the next. Finally, there were some obvious 
symptom data errors, e.g. zeroes in the data. 

One of the useful things about time series models 
is that they yield an estimate of the variance 
of the projection. The variance estimate can 
therefore be used to flag unreliable projections 
which can then be dropped, and in this case we 
reverted to the last annual estimate as the best 
estimate of the next year's estimate. 

The second application used the Keyfitz and 
Flieger data on the Swedish population quenquen- 
nially represented from 1780 to 1970, that had 
been used by Saboia (1974). In that work, Saboia 
derived, using the Box and Jenkins statistical 
devices, two time series models, for the Swedish 
data. 

Table 3 

Comparison of Three Time Series Models 
Fitted to Swedish Population Data Series 

Residual 
Fitted Model Variance Source 

Our Model 
ARIMA (2,0,0) 

Saboia (1974) 
ARIMA (1,1,0) 

Saboia (1974) 
ARIMA (0,2,1) 

1.347Pt_1-0.323Pt_2 0.00396 

Pt= 0.069 + 1.540Pt_1 0.00442 
-0.540Pí_2 

2Pt-11 -Pt-2 +at 
-0.663at-2 

0.00463 

For ease of comparison we have summarized 
the models and their parameters in Table 3. Our 
model seems to have slightly smaller residuals, 
about 12% in one case and 17% in the other. Our 
auto -regressive model has a zero intercept, 
whereas Saboia found a small positive intercept. 
Our model is not constrained to stationarity. 
When these three models are applied to the task 
of making 1965 and 1970 projections from 1960 as 
the final data point, we can compare them with 
the actual populations from the Swedish series. 
As can be seen in Table 4, all three of the 
models perform well on the one step ahead 1965 
projection, and none look very well for the two 

step ahead 1970 projection. 

By way of conclusion, three things seem to 

be clear. One, in the absence of a long data 

series, one can derive time series models from 
the substantive mechanisms of the data series 

themselves. Second, the shorter data series, 

though inappropriate for deriving a model, can 

be used to estimate the parameters, and yield 
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useful results. Finally, the advantage of the 

variance estimate of a time series model allows 

the evaluation of the projections in terms of 

confidence regions. 

Table 4 

Forecasts of the 1965 and 1970 Population 

of Sweden for Each Model 

Forecast 

Actual Our Model Saboia Saboia 
Year Population* ARIMA ARIMA ARIMA 

(2,0,0) (1,1,0) (0,2,1) 

1965 

1970 

7,734 

8,346 

7,728 

7,992 

7,666 

7,835 

7,716 

7,935 

*in millions 
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